Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse‐reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse‐response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO2uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse‐response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes.more » « less
-
Summary It has been 60 years since the discovery of C4photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C4photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C4CO2‐concentrating mechanism supports a general C4plant phenotype capable of fast growth and high resource‐use efficiencies. The fast‐efficient C4phenotype has the potential to operate at high productivity rates, while allowing for less biomass allocation to root production and nutrient acquisition, thereby providing opportunities for the evolution of novel trait covariances and the exploitation of new ecological niches. We propose the placement of the C4fast‐efficient phenotype near the acquisitive pole of the world‐wide leaf economic spectrum, but with a pathway‐specific span of trait space, wherein selection shapes both acquisitive and conservative adaptive strategies. A trait‐based perspective of C4photosynthesis will open new paths to crop improvement, global biogeochemical modeling, the management of invasive species, and the restoration of disturbed ecosystems, particularly in grasslands.more » « less
-
Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair more than 5600 km of natural gas pipeline corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced average annual production 6 to 29% and caused up to a fivefold increase in the sensitivity of net primary productivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at locations with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of increasing precipitation variability on NPP in drylands.more » « less
-
Summary Microbial nitrogen (N) fixation accounts forc. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free‐living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N‐fixation rates because warmer temperatures favor the growth and activity of N‐fixing microbes.We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples.Warming significantly increased asymbiotic N‐fixation rates in soil by 55% (to 0.002 kg ha−1 yr−1) and by 525% in leaf litter (to 14.518 kg ha−1 yr−1). This increase in N fixation was associated with changes in the N‐fixing bacterial community composition and soil nutrients.Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions.more » « less
-
Abstract Plant element stoichiometry and stoichiometric flexibility strongly regulate ecosystem responses to global change. Here, we tested three potential mechanistic drivers (climate, soil nutrients, and plant taxonomy) of both using paired foliar and soil nutrient data from terrestrial forested National Ecological Observatory Network sites across the USA. We found that broad patterns of foliar nitrogen (N) and foliar phosphorus (P) are explained by different mechanisms. Plant taxonomy was an important control over all foliar nutrient stoichiometries and concentrations, especially foliar N, which was dominantly related to taxonomy and did not vary across climate or soil gradients. Despite a lack of site‐level correlations between N and environment variables, foliar N exhibited intraspecific flexibility, with numerous species‐specific correlations between foliar N and various environmental factors, demonstrating the variable spatial and temporal scales on which foliar chemistry and stoichiometric flexibility can manifest. In addition to plant taxonomy, foliar P and N:P ratios were also linked to soil nutrient status (extractable P) and climate, especially actual evapotranspiration rates. Our findings highlight the myriad factors that influence foliar chemistry and show that broad patterns cannot be explained by a single consistent mechanism. Furthermore, differing controls over foliar N versus P suggests that each may be sensitive to global change drivers on distinct spatial and temporal scales, potentially resulting in altered ecosystem N:P ratios that have implications for processes ranging from productivity to carbon sequestration.more » « less
-
Abstract Background and AimsTropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three times greater for the tropics than other for ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink. MethodsWe used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light-saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity and elevation, as well as also how responses differed among successional strategy, leaf habit and light environment. Key ResultsOptimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for ‘light’ than ‘shaded’ leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen species. Most global modelling efforts consider all tropical forests as a single ‘broadleaf evergreen’ functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modelling efforts. ConclusionsThis novel research will inform modelling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming.more » « less
An official website of the United States government
